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P.1. Plan of the Lectures

Nicola Bellomo Lecture 1. A Quest Towards a Mathematical Theory
of Living Systems

Diletta Burini Lecture 2. Mathematical Tools of the Kinetic Theory
of Active Particles

Nicola Bellomo, Diletta Burini and Nisrine Outada Lecture 3. Towards
a Mathematical Theory of Virus Pandemics - Models with
Mutations, Variants and Vaccination Programs

Damian Knopo� Lecture 4. Heterogeneity and Networks

Pietro Terna Lecture 5. Agent Methods to Modeling Virus
Pandemics - A quick reference to complexity

Pietro Terna Closure, Description of the material support to the
Lectures, Acknowledgments
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2.1. On the kinetic theory of active particles

This Lecture is devoted to the derivation of mathematical structures

consistent with the strategy proposed in Lecture 1. These can capture

the complexity features of living systems. We refer to large systems of

very many interacting entities which might be grouped into the so-called

functional subsystems.

A key feature of the structure is that interactions have a
nonlinearly additive character.
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2.2. On the kinetic theory of active particles

Scaling and selection of the modeling scale

• The representation and modeling of dynamical systems can be
developed at the three classical scales: microscopic (individual based),
macroscopic (hydrodynamical), mesoscopic (kinetic).

• The dependent variable in the micro- and macro-scale is deterministic,
while in the kinetic theory approach it is a probability distribution
function over the microscopic state of the interacting entities.

• We focus on the collective dynamics of large systems of interacting
individuals. Therefore the kinetic theory approach appears to be the most
appropriate to be selected.

• A key di�culty is that the number of interacting entities is not large
enough to fully justify the continuity assumption of the distribution
function.
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2.3. On the kinetic theory of active particles

Pioneering papers and books

* I. Prigogine and and R. Herman, Kinetic Theory of Vehicular
Tra�c, Elsevier, New York, (1971).

* S. Paveri Fontana, On Boltzmann like treatments for tra�c �ow,
Transp. Research, 9, 225�235, (1975).

* E. Jager and L.A. Segel, On the distribution of dominance in a
population of interacting anonymous organisms, SIAM J. Appl. Math. 52,
1442�1468, (1992).

* N. Bellomo and G. Forni, Dynamics of tumor interactions with the host
immune system, Math. Comp. Model., 20, 107�122, (1994).
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2.4. On the kinetic theory of active particles

Books and surveys on the kinetic theory of active particles

* A. Bellouquid and M. Delitala, Modelling Complex Biological
Systems - A Kinetic Theory Approach, Birkhäuser-Springer, N.Y.,
(2006).

* N. Bellomo, A. Bellouquid, L. Gibelli, and N. Outada, A Quest
Towards a Mathematical Theory of Living Systems,
Birkhäuser-Springer, New York, (2017).

* N. Bellomo, D. Burini, G. Dosi, L. Gibelli, D. Knopo�, N. Outada,
P. Terna, and M.-E. Virgillito. What is life? A perspective of the
mathematical kinetic theory of active particles, Math. Models Methods

App. Sci., 31, 1821�1866, (2021). (Open Source)

• This open source essay is the main reference for this lecture.
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2.5. On the kinetic theory of active particles

We consider a large system of active particles in the case of spatial
homogeneity

• The overall state of the system is subdivided into functional
subsystems (in short FS) labeled by the subscript i. Their state is
delivered by the one-particle distribution function

fi = fi(t,u) : [0, T ]×Du → IR+,

such that fi(t,u) du denotes the number of active particles whose
state, at time t, is in the interval [u,u + du] of the i-th functional
subsystem.

• u is the vector activity variable which models the strategy
expressed by each functional subsystem.
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2.6. On the kinetic theory of active particles

Interactions by evolutionary stochastic games: Living entities, at
each interaction, play a game with an output that depends on their
strategy often related to surviving and adaptation abilities.

1. Competitive (dissent): One of the interacting particles increases
its status by taking advantage of the other, obliging the latter to
decrease it. Competition brings advantage to only one of the two.

2. Cooperative (consensus): The interacting particles exchange their
status, one by increasing it and the other one by decreasing it.
Interacting active particles show a trend to share their micro-state.

3. Learning: One of the two modi�es, independently from the other,
the micro-state. It learns by reducing the distance between them.

4. Hiding-chasing: One of the two attempts to increase the overall
distance from the other, which attempts to reduce it.
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2.7. On the kinetic theory of active particles

Pictorial illustration of interactions: Black and grey bullets denote,
respectively, the pre- and post-interaction states.
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2.8. On the kinetic theory of active particles

Stochastic game theory

I Stochastic game theory deals with entire population of players,

where strategies with higher payo� might spread over the population.

I The strategy expressed by individuals. i.e. active particles, is

heterogeneously distributed over players.

I Players are modeled as random variables linked to a distribution

function over the activity variable.

I The pay-o� is heterogeneously distributed over players and it can be

motivated by �rational� or even �irrational� strategies.

I The payo� depends on the actions of the co-players as well as on the

frequencies of interactions. Both quantities depend on the overall

state of the system.
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2.9. On the kinetic theory of active particles

Modeling interactions

I Each a-particle has a sensitivity Ω. The size of Ω depends on the
amount of information which can be obtained by an active particle.

I Interactions are nonlinearly additive and are of two types
micro-micro or micro-macro, where the term macro corresponds to
macroscopic quantities obtained by weighted, by u, averaging of the
distribution function.

I Interactions occur with an interaction rate which depend on the
distribution function and are related to the collective learning

dynamics.

I Interactions can modify the micro-state of the interacting a-particles
and promote transitions across FSs.
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2.10. On the kinetic theory of active particles

Some remarks on the modeling of interactions

Active particles which play the game: We consider three types of
particles: Test particle which is representative of the whole system for
each FS; Candidate particles which by interaction with Field particles can
acquire state of test particles. The identi�cation of these a-particles is in
the sense of statistics, namely by their distribution function over the
micro-state.

Interactions can be non-symmetric: Interaction of test (or candidate)
particles with �eld particles involve only those particles which are in their
domain of the space of micro-states. However, the dynamics of
interaction may not involve the whole domain, but only of a part of it
which might not be symmetric. The resulting action of a given number of
entities (�eld entities) over a single one (test entity) cannot be assumed
to merely consisting in the linear superposition of the actions exerted
individually by all single �eld entities.
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2.11. On the kinetic theory of active particles

Interaction rates

H.1. Micro-micro interaction rates: Candidate (or test particles), of
the h-FS and with state u∗ (or u), interact with the �eld particles, of the
k-FS, in the interaction domain Ω. Interactions occur with the
interaction rate ηhk[fh, fk](u∗,u

∗) (or ηik[f, fk](u, β∗)). The
subscripts h and k labels the interacting FSs.

H.2. Micro-macro interaction rates: Candidate (or test particles) of
the h-FS and with state u∗ (or u), interact with the the k-FS represented
by the mean value Ek. Interactions occur with the interaction rate
µhk[fh, fk](u∗,Ek) (or µik[f, fk](u,Ek)).

D. Burini Life and Mathematics



2.12. On the kinetic theory of active particles

Transition probability densities. Conservative interactions

H.3. Micro-micro state and FS transitions: A candidate particle
modi�es its state as modeled by Cihk[fh, fk](u∗ → u|u∗,u

∗), which
denotes the probability density that a candidate particle of the h-FS with
state u∗ reaches the state u in the i-FS after an interaction with the �eld
particles of the k-FS with state u∗.

H.4. Micro-macro state and FS transitions: A candidate particle
modi�es its state modeled byMi

hk[fh, fk](u∗ → u|u∗,u
∗), which

denotes the probability density that a candidate particle of the h-FS with
state u∗ reaches the state u in the i-FS after an interaction with the �eld
particles of the k-FS with state u∗.
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2.13. On the kinetic theory of active particles

Proliferative-destructive events.

H.4. Proliferative dynamics: A candidate h-particle may proliferate in
the i-FS and state u as modeled by the terms
Pi
hk[fh, fk](u∗ → u|u∗,u

∗) andMi
hk[fh, fk](u∗ → u|u∗,Ek),

corresponding - respectively - to micro-micro and micro-macro
interactions, by interaction with the �eld particles of the k-FS with state
u∗ and with the k-FS as a whole.

H.5. Destructive dynamics: A test i-particle may destroyed in the i-FS
and state u as modeled by the term Dik[fh, fk](u,u∗) and
N i

hk[fh, fk](u,Ek), corresponding - respectively - to micro-micro and
micro-macro interactions, by interaction with the �eld particles of the
k-FS with state u∗ and with the k-FS as a whole.
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2.14. On the kinetic theory of active particles

Pictorial illustration, where green and white bullets denote, respectively,
the pre- and post-interaction states.
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2.15. On the kinetic theory of active particles

Balance within the space of microscopic states and structure

Variation rate of the number of active particles

= Inlet �ux rate caused by conservative interactions

−Outlet �ux rate caused by conservative interactions

+Inlet �ux rate caused by proliferative interactions

−Outlet �ux rate caused by destructive interactions,

where all above �uxes include both micro-micro and micro-macro
interactions, as well as the dynamics of mutations.

This balance relation corresponds to the following structure:

∂tfi(t,u) =
(
Ci +Mi − Li − LM

i + Pi −Di + PM
i −DM

i

)
[fh, fk](t,u).
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2.16. On the kinetic theory of active particles

Calculations toward a mathematical structure

Ci =

n∑
h,k=1

∫
Ω×Ω

ηhk[·]Cihk[fh, fk] (u∗ → u|u∗,u
∗) fh(t,u∗)fk(t,u∗) du∗du

∗,

Mi =

n∑
h,k=1

∫
Ω

µhk[fh, fk]Mi
hk[·] (u∗ → u|u∗,u

∗) fh(t,u∗)Ek(t) du∗,

Li = fi(t,u)

n∑
k=1

∫
Du

ηik[fi, fk](u,u∗) fk(t,u∗) du∗,

LM
i = fi(t,u)

n∑
k=1

µik[·](u,Ek(t))Ek(t),
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2.17. On the kinetic theory of active particles

Calculations toward a mathematical structure:

Pi =

n∑
h,k=1

∫
Ω×Ω

ηhk[fh, fk](u∗,u
∗)Pi

hk(u∗,u
∗) fh(t,u∗)fk(t,u∗) du∗ du

∗,

Di = fi(t,u)

n∑
k=1

∫
Du

µik[fi, fk](u,u∗)Dik(u,u∗)fk(t,u∗) du∗.

And similarly for proliferative destructive dynamics corresponding to
micro-macro interactions.

Remark; The general theory includes space dynamics. See the
bibliography in Slide 2.4.
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2.18. On the kinetic theory of active particles

We need a mathematics for a �living�, multiscale, evolutionary,
nonlinear world

END Lecture 2!
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