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3.0. Plan of the Lectures

Nicola Bellomo Lecture 1. A Quest Towards a Mathematical Theory
of Living Systems

Diletta Burini Lecture 2. Mathematical Tools of the Kinetic Theory
of Active Particles

Nicola Bellomo, Diletta Burini and Nisrine Outada Lecture 3. Towards
a Mathematical Theory of Virus Pandemics - Models with
Mutations, Variants and Vaccination Programs

Damian Knopo� Lecture 4. Heterogeneity and Networks

Pietro Terna Lecture 5. Agent Methods to Modeling Virus
Pandemics - A quick reference to complexity

Pietro Terna Closure, Description of the material support to the
Lectures, Acknowledgments
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3.1. Towards a Mathematical Theory of Virus Pandemics

The pandemics of COVID19 has a�ected our minds, health,
wellbeing. However, we have learned that science is a primary
wealth to respect and preserve and that we leave in a complex and
interconnected world.
This Lecture is devoted to the derivation of a mathematical theory,

consistent with the strategy proposed in Lectures 1 and 2, of mutating

virus pandemics within a multi scale vision. Applications to within host

dynamics follow in the second part of the Lecture
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3.2. Towards a Mathematical Theory of Virus Pandemics

Main Sources

* Rapid Assistance in Modelling the Pandemic: RAMP A call for
assistance, addressed to the scienti�c modelling community Coordinated

by the Royal Society, In-host modeling, coordinated by Mark Chaplain.
https://epcced.github.io/ramp/

* N. Bellomo, R. Bingham, M. A. J. Chaplain, G. Dosi, G. Forni,
D. A. Knopo�, J. Lowengrub, R. Twarock, and M. E. Virgillito, A
multi-scale model of virus pandemic: Heterogeneous interactive
entities in a globally connected world, Math. Models Methods Appl.

Sci., 30, 1591�1651, (2020). (Open source)

* N. Bellomo, D. Burini, G. Dosi, L. Gibelli, D. Knopo�, N. Outada,
P. Terna, and M.-E. Virgillito. What is life? A perspective of the
mathematical kinetic theory of active particles, Math. Models

Methods App. Sci., 31, 1821�1866, (2021). (Open source)
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3.3. Towards a Mathematical Theory of Virus Pandemics

Some preliminary reasonings

• Applied mathematicians cannot tackle the modeling problem by a
stand-alone approach: The scope of a research project in the �eld should
not be con�ned only to the interaction of mathematics with biological
and medical sciences. A global interdisciplinary vision is necessary,
including economists and sociologists.

• Modeling approach should go far beyond deterministic population
dynamics: Individual reactions to the infection and pandemic are
heterogeneously distributed over the population. Spatial dynamics is
generated by nonlocal interactions and transportation devices.

• The modeling ought to be developed within a multiscale approach: The
macro-scale and the micro-scale constantly interact. Heterogeneity
appears at both scales. Below the micro-scale the molecular scale at the
level of genes should be considered.
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3.4. Towards a Mathematical Theory of Virus Pandemics

On a Systems Approach

B2: Infected,
within host

B1: Healthy
BV : Vac-
cination

B4: Hospitalized

BSR: Short
range contacts

BLR: Long
range networks

B3: Recovered

B5: Dead
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3.5. Towards a Mathematical Theory of Virus Pandemics

Blocks of the system approach: Slide 3.5 has described a systems
approach towards a mathematical theory of a pandemics of a mutating
(evolutionary) virus. A mathematical theory suitable to consider all
interactions in the �ow chart of Slide 3.5 is not yet available. The
interpretation of each block can contribute, as preliminary step, to the
said mathematical theory.

Block 1 - Dynamics of healthy people due to contagion: An
heterogeneous populations should be considered. Heterogeneity may
include di�erences in the immune defence ability, social state, type of
employment, etcetera. The dynamics refers, for each subpopulation, to
the number and defence ability of healthy people considering: (i) Decay
to contagion by short range interactions and inlet-outlet �ows due to
transportation over networks; (ii) Improved defence ability of vaccinated
individuals; (iii) Recovery after contagion.
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3.6. Towards a Mathematical Theory of Virus Pandemics

Block BSR - Contagion by short range interactions: The contagion
depends on the physical and social distance between individuals, i.e. both
the protective devices and the physical distance. Contagion probability
depends on the level of the infection, i.e. on the viral charge, as well as
on the social distance between individuals. Contagion can even a�ect
vaccinated individuals although they possess a stronger immune defence.

Studies on crowd dynamics lead to compute trajectories of pedestrian
motion under awareness of contagion risk:

* Daewa Kim and A. Quaini, Coupling kinetic theory approaches for
pedestrian dynamics and disease contagion in a con�ned
environment, Math. Models Methods in App. Sci., 30(10), 1893�1915,
(2020).
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3.7. Towards a Mathematical Theory of Virus Pandemics

Block BLR - Inlet and outlet related to networks connection: The
movement in the territory due to transportation networks can contribute
to the spread in space of the infection. Two types, at least, of networks
should be considered. I.E. short distance networks for daily inlet-outlet
dynamics and long distance network for aperiodic. It is an important
feature as already put in evidence in the second ∗ of the Slide 3.2.

Block BV - Vaccination program: The vaccination program may be
planned as a function of time and it might depend on the number of
non-vaccinated people. A vaccine increases the defence ability of of the
immune system of each individual. Therefore vaccination acts at the low
scale within each individual.Vaccinated individuals can, however, become
infected, although by lower levels of the viral charge.
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3.8. Towards a Mathematical Theory of Virus Pandemics

Block 2 - In-host dynamics of infected individuals: A micro-scale
competition occurs in the lungs of infected individuals. Virus particles
proliferate feeded by lung tissues and increase their aggressiveness which
is contrasted by immune system. Within each infected individual, a
competition occurs between the proliferative virus and the immune

system. The level of infection can progress (or regress) due to a
prevalence (or lack of prevalence) of the virus over the immune defence.

Block Hospitalization: Infected individuals may need home care or,
depending on the level of the pathology, di�erent levels of hospitalization
up the resuscitation actions. The modeling should consider di�erent levels
of pathology as well as medical care strategies.

Block - Recovery/Death: Recovery is reached if the level of
progression of the virus is reduced to zero. Death if the action of the
immune system and medical care do not succeed to reduce the
progression of the virus which reaches a limit value for survivance.
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3.9. In-host Dynamics: Mutations, Variants, Vaccination

A general structure provides the conceptual framework: The
structure is delivered by the mathematical theory presented in Lectures 2,
3:

d

dt
frij = Gr

ij(f)− Lr
ij(f)

=

m∑
s=1

n∑
h,k,p,q=1

ηpqhk(r, s)(f)A
pq
hk(hk → ij)(f)frhk f

s
pq

−frij
m∑
s=1

n∑
p,q=1

ηpqij (f) f
s
pq

The subscripts h, k and p, q denote, respectively, the micro-states
corresponding to the FSs which by interactions lead to the dynamics of
fr; ηpqhk, η

pq
ij , denote the interaction rates, and Apq

hk the transition rate
into the micro-state i, j of the r-FS.
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3.10. In-host Dynamics: Mutations, Variants, Vaccination

From contagion and in-host dynamics. Parameters

• α = α(t) ∈ [0, 1] de�nes the level of con�nement. It is also a locking
parameter α` < 1 (social distance). The awareness of risk of contagion
induces a �locking� action α`. Subsequently to a decay of the number of
infected, a de-locking action may be applied by αd with α` < αd < 1.

• w is the defence ability of the immune system with levels
w1 < β < wv = β(1 + γ) corresponding, respectively, to the innate
immunity, activated within host immunity, and immunity activated by
vaccines, where γ models the intensity of the action of the vaccine.

• κj , with j = 1, . . . ,m, de�nes the level of pathology corresponding to
the level of proliferative activity of the virus. κj is related to uj as
follows: κj = κuj .

• λ > 0 models the increase of proliferative activity of a variant with
respect to the primary virus: κj(λ) = κj(1 + λ).

• µ models the level of the e�cacy of the vaccine.
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3.11. In-host Dynamics: Mutations, Variants, Vaccination

Seven FSs labeled by the subscripts i = 1, . . . , 7 which are carrier of a
pathological state, include an additional micro-state corresponding to the
level of the pathology labeled by the superscript j = 1, . . . ,m. All
dependent variables are referred (divided) to N0.

i = 1: healthy with state f1(t;w1).

i = 2: vaccinated with state f2(t;wv).

i = 3: infected individuals by the primary virus f j3 (t, κj , β), with j > 1.

i = 4: infected individuals by a variant f j4 (t, κj(1 + λ), β), with j > 1.

i = 5: individuals who after vaccination are infected by a variant

f j5 (t, κj(1 + λ), β(1 + γ)), with j > 1.

i = 6: recovered individuals f6 = f6(t) for past-infected who succeed
to go back to the state j = 1.

i = 7: death individuals f7 = f7(t) for infected reaching j = m.
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3.12. In-host Dynamics: Mutations, Variants, Vaccination

In-host dynamics: The action of the immune system

f j3,4,5: Infected
f j−1
3,4,5: Low-
Infected

f j+1
3,4,5: High-
Infected

f j3,4,5: Action
immune γ

f j+1
3,4,5: Action
immune γ

Figure � Dynamics of f j under the action of immune system
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3.13 In-host Dynamics: Mutations, Variants, Vaccination

In-host dynamics: The action of the virus

f j3,4,5: Infected
f j−1
3,4,5: Low-
Infected

f j+1
3,4,5: High-
Infected

f j3,4,5: Action
virus κj

f j−1
3,4,5: Action
virus κj−1

Figure � Dynamics of f j under the action of the virus.
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3.14. In-host Dynamics: Mutations, Variants, Vaccination

Vaccination program: It can depend on time. A speci�c program is:

ϕ(t; f1) > 0, if f1 < 1− δ; ϕ(t; f1) = 0 if f1 ≥ 1− δ,

where δ denotes a sentinel fraction of infected individuals which induces
the start of vaccination program. The action increases γ to
ωv = γ(1 + µ). Then, f2 = f2(t, γ(1 + µ)).

Dynamics of vaccinated individuals: Let x = f1 + δ − 1, where H is
the heaviside function, H(x) = 1 for x > 0, and H(x) = 0 for x ≤ 0.
Then

∂tf2(t) = −α(t)
m−1∑
j=2

kj(1 + λ)f2(t)
(
f j4 (t) + f j5 (t)

)
+ ϕ(t; f1)H(x),

Dynamics of healthy people: The dynamics refers to the decay of f1(t)
due to contagion interactions ruled by α and by the vaccination program:

∂tf1(t) = −α(t)
m−1∑
j=2

kjf1(t)
(
f j3 (t) + (1 + λ)f j4 (t)

)
− ϕ(t; f1)H(x).
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3.15. In-host Dynamics: Mutations, Variants, Vaccination

In-host dynamics: The virus proliferates by feeding lung tissues and
increase the level of the pathology from j- to (j + 1)-level depending on
κj and, on the level by λ, of the new variant. The immune system
decreases j- to (j − 1)-level of the virus depending on the parameter w.

∂tf
j
3 (t) = α(t)

m−1∑
s=2

κs f1(t) f
s
3 (t) δ2j + κj−1 f

j−1
3 (t) + γ f j+1

3 (t)

−κj f j3 (t)− γ f
j
3 (t).

The infection by the variants refers to f1 and by infected εv in f4.

∂tf
j
4 (t) = α(t)

m−1∑
s=2

κs(1 + λ) f1(t) f
s
4 (t) δ2j + κj−1(1 + λ) f j−1

4 (t)

+γ f j+1
4 (t)− κj(1 + λ) f j4 (t)− γ f

j
4 (t),

where δ denotes the Dirac delta function, while the proliferative ability of
the variant is modeled by the factor (1 + λ).
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3.16. In-host Dynamics: Mutations, Variants, Vaccination

Follows Block 2
The contagion dynamics of individuals who have been vaccinated involves
vaccinated individuals of the population f2, who possess now a stronger
ability in the immune defence, and f4 that might infect vaccinated
individuals.

∂tf
j
5 (t) = α

m−1∑
s=2

κs(1 + λ)f2(t) (f
s
4 (t) + fs5 (t)) δ2j + κj−1(1 + λ)f j−1

5 (t)

+γ(1 + µ) f j+1
5 (t)− κj(1 + λ) f j5 (t)− γ(1 + µ) f j5 (t).

Block 3 - Trend to recover: The dynamics consider the in�ow,of
healthy people, of individuals from 3-FS, 4-FS and 5-FS, with state j = 2
into 1-FS, corresponding to j = 1, due to the action of the immune
system:

∂tf6(t) = γ
(
f23 (t) + f24 (t)

)
+ γ(1 + µ)f25 (t).
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3.17. In-host Dynamics: Mutations, Variants, Vaccination

Block 4 - Hospitalization: The dynamics related to need of
hospitalization is modeled by the variables f j3,4,5 with 2 < j < m− 1. As
an example, for m = 6, j = 2, 3, 4, 5 may correspond to asymptomatic,
symptomatic needing home care, hospital care, and advanced care,
respectively. The model derived in this subsection do not consider this
speci�c re�nement which is, however critically analyzed in the last
subsection.

Block 5 - Trend to death: The dynamics are caused by the in�ow from
3-FS, 4-FS and 5-FS in j = m− 1, into 7-FS, corresponding to j = m,
due to the action of the virus proliferation:

∂tf7(t) = κm−1 f
m−1
3 (t) + κm−1(1 + λ)

(
fm−1
4 (t) + fm−1

5 (t)
)
.

The mathematical model is obtained by all interconnected
equations modeling the dynamics of the system
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3.18. Multiscale models of contagion and in-host dynamics

Second wave: decreasing the social distance, i.e. increasing the parameter
α, decreases the number of infected. The second wave can show
infections higher than the �rst wave.

n3 for ε = 0.001, κ = 0.1, Td = 1, α` = 0.1,

αd = 0.40 (black), αd = 0.45 (red), and αd = 0.50 (blue).
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3.19. Multiscale models of contagion and in-host dynamics

Second wave: Further decrease of the con�nement parameter decreases
the peaks of the second wave.

n3 for ε = 0.001, κ = 0.1, Td = 1, α` = 0.1,

αd = 0.20 (black), αd = 0.25 (red), and αd = 0.30 (blue).
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3.20. Multiscale models of contagion and in-host dynamics

Dynamics with variants: The variant become predominant during the
second wave

n3(t) and n4 = n4(t) for ε = 0.01, εv = 0.005, κ = 0.1, λ = 1.5, Td = 1,
α` = 0.1, αd = 0.50.
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3.21. Multiscale models of contagion and in-host dynamics

Dynamics with variants: Reducing the de-locking time modi�es the
dynamics

Infected population n3 = n3(t) and n4 = n4(t) for ε = 0.01, εv = 0.005,
κ = 0.1, λ = 1.5, Td = 0.75, α` = 0.1, αd = 0.50.
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3.22. Multiscale models of contagion and in-host dynamics

n3 (infected by the primary virus) and n4 (infected by the variant)
versus time under a locking and de-locking actions
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3.23. Multiscale models of contagion and in-host dynamics

n3 and n4 versus time under a locking and de-locking actions and
under a under vaccination program
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3.24. Multiscale models of contagion and in-host dynamics

Summary

I The variant becomes prevalent already during the �rst wave, while
during the second wave it fully dominates over the primary virus.
This behavior is enhanced by λ and it depends also on the
parameters of the locking and de-locking action. For instance, it is
enhanced by αd.

I Simulations show how the vaccine decreases the number of infected
individuals. The action already appears during the locking time and
enhanced after the down-locking.

I Increasing values of µ, lead to decreasing values of the infected
individuals.

I Increasing values of αd, leads to a second wave with high values of
the density of infected individuals thus reducing the bene�t of the
vaccination program. In addition, the presence of vaccinated, but
re-infected cannot be neglected.
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3.25. Closure

B. Avishai, The pandemic isn't a black swan but a portent of a more

fragile global system, The New Yorker, April 21, (2020).

https://www.newyorker.com/news/daily-comment/the-pandemic-isnt-a-
black-swan-but-a-portent-of-a-more-fragile-global-system
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