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P.1. Plan of the Lectures

Nicola Bellomo Lecture 1. A Quest Towards a Mathematical Theory
of Living Systems

Diletta Burini Lecture 2. Mathematical Tools of the Kinetic Theory
of Active Particles

Nicola Bellomo, Diletta Burini and Nisrine Outada Lecture 3. Towards
a Mathematical Theory of Virus Pandemics - Models with
Mutations, Variants and Vaccination Programs

Damian Knopo� Lecture 4. Heterogeneity and Networks

Pietro Terna Lecture 5. Agent Methods to Modeling Virus
Pandemics - A quick reference to complexity

Pietro Terna Closure, Description of the material support to the
Lectures, Acknowledgments
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4.1. Heterogeneity and Networks

This lecture introduces network structures capable of capturing

connectivity and some degree of spatial distribution of the population.

Moreover, heterogeneity is also considered: in the case of modeling

infectious diseases, e.g., the population can be strati�ed according to age

or risk groups, and the impact on the overall dynamics will be discussed.
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4.2. Heterogeneity and Networks

Main sources

* M. Aguiar, G. Dosi, D. A. Knopo�, and M. E. Virgillito, A multiscale
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* A.L. Barabasi, Network Science, Cambridge Univ. Press, 2016.

* N. Bellomo, R. Bingham, M. A. J. Chaplain, G. Dosi, G. Forni, D. A.
Knopo�, J. Lowengrub, R. Twarock, and M. E. Virgillito, A multi-scale

model of virus pandemic: Heterogeneous interactive entities in a globally

connected world, Math. Models Methods Appl. Sci., 30, 1591�1651,
(2020).

* D. Knopo� and F. Trucco, A compartmental model for antibiotic

resistant bacterial infections over networks, Int. J. Biomath. 13(1):
2050001 (16 pages), (2020).

* M. Aguiar, V. Anam, N. Cusimano, D. Knopo�, and N. Stollenwerk,
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In: Predicting Pandemics in a Globally Connected World, Volume 1 - N.

Bellomo and M. Chaplain, Eds., Birkhäuser-Springer Series �Modeling and

Simulation in Science, Engineering and Technology�, to appear (2021).
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4.3. Mathematical model

Within host Host Population

Figure � Schematic representation of di�erent scale dynamics. COVID-19 virus
image on the left credit: Photo by Viktor Forgacs on Unsplash.
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4.4. Mathematical model

Model recap
I Let us consider a population of spatially homogeneous distributed

individuals. Each individual can belong, at each time t, to one of the
following compartments or FSs: susceptible (S-FS), infected (I-FS),
recovered (R-FS) or deceased (D-FS). The S-FS is assumed to have only
an outlet �ow (into the I-FS), while R-FS and D-FS have only an inlet
�ow (from I-FS).

I We assume that recovered individuals get a long lasting immunity and

remain in that compartment.

Infected
i = 2

Healthy
i = 1

Recovered
i = 3

Dead
i = 4
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4.5. Mathematical model

Model recap
I The micro-state of every individual is described by a variable w ∈ [0, 1]

corresponding to the level of activation of the immune defence. It is
convenient to discretize into a set

w = {w1 = 0, . . . , wk =
k − 1

n− 1
, . . . , wn = 1},

such that n risk groups (e.g., according to age or presence of
co-morbidities) are considered. In this way, w1 = 0 and wn = 1
correspond, respectively, to the lowest and highest immune system
activation.

I Within the I-FS individuals are also characterized by a variable u ∈ [0, 1]
representing the level of progression of the viral infection (e.g., from mild
to severe). If m possible states are considered, we have

u = {u1 = 0, . . . , up =
p− 1

m− 1
, . . . , um = 1}.

Here, if an individual reaches the state u1 = 0 we assume that it is

recovered from the infection (transition into R), while reaching the state

um = 1 implies a decease (transition into D).
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4.6. Mathematical model

u1 u2

S

R
uj−1 uj uj+1 um−1 um

D

µ̃γ̃ I

Figure � Illustration of the transitions: susceptible individuals can get infected
with an infection rate β̃, entering to the infected compartment (wide box in the
middle) with state u2. Then, competitive interactions between the pathogen
that replicates with rate µ̃ towards more aggressive infection states and the
immune system, which acts with rate γ̃, with resulting transition into the R or
D compartment.
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4.7. Mathematical model



d

dt
fkS(t) = −

n∑
l=1

m−1∑
q=2

αk uq f
k
S(t) f

q,l
I (t),

d

dt
fp,kI (t) =

n∑
l=1

m−1∑
q=2

αk up f
k
S(t) f

q,l
I (t) δ2p + βup−1 f

p−1,k
I (t)

+ γ wk f
p+1,k
I (t)− β up f

p,k
I (t)− γ wk f

p,k
I (t),

d

dt
fR(t) = γ

n∑
k=1

wk f
2,k
I (t),

d

dt
fD(t) = β um−1

n∑
k=1

fm−1,k
I (t),

(1)
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4.8. Network structure

I Let us now consider that the dynamics takes place within several nodes of
an undirected weighted network G = (V,E), where V is a set of N nodes
and E is a set of edges joining some pairs of nodes. Let A = [aij ]i,j=1...,N

be the adjacency matrix of G.
I Entries aij ∈ [0, 1] weigh the �intensity� of the interaction between nodes
i and j.

I Within each node there is a subpopulation of individuals belonging to one
of the classes S, I, R or D.

I To keep the model as a generalization of the one presented above, there is
an edge connecting each node to itself, namely a self-loop. Let aii = 1 for
i = 1, . . . , N .

I The network is undirected. Consequently, A is symmetric.
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4.9. Network structure

Let fk
iS , f

p,k
iI , fiR and fiD denote the distribution functions of susceptible,

infected, recovered and deceased individuals within node i, for i = 1, . . . , N ,
k = 1, . . . , n and p = 1, . . . ,m. System (1) can be now formulated for the
entire network as follows:



d

dt
fk
iS(t) = −

N∑
j=1

n∑
l=1

m−1∑
q=2

aij α
k
i uq f

k
iS(t) f

q,l
jI (t),

d

dt
fp,k
iI (t) =

N∑
j=1

n∑
l=1

m−1∑
q=2

aij α
k
i up f

k
iS(t) f

p,l
jI (t) δ2p + βup−1 f

p−1,k
iI (t)

+ γ wk f
p+1,k
iI (t)− β up f

p,k
iI (t)− γ wk f

p,k
iI (t),

d

dt
fiR(t) = γ

n∑
k=1

wk f
2,k
iI (t),

d

dt
fiD(t) = β um−1

n∑
k=1

fm−1,k
iI (t),

(2)

where αk
i is the contagion rate of individuals with state wk within node i.
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4.10. Within node dynamics

To characterize each node as a distinct metapopulation, we consider 4 classes

of nodes which are distinguished in terms of three attributes: size, immune

distribution, multiplicity of each class of node:

I Household

I School

I Hospital/nursing home

I Company/working place

Node type Size Immune Color

distribution

Household 5 Centered Green

School 150 Skewed-right Blue

Hospital 150 Skewed-left Red

Company 150 Centered Black

Table � Parametrization of each node
type.
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4.11. Network dynamics

Erdös-Rényi random network
A random network consists of N nodes where each node pair is connected with
wiring probability p. Each node is statistically equivalent to another. Such a
network can be constructed as follows:
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4.11. Network dynamics

Erdös-Rényi random network
A random network consists of N nodes where each node pair is connected with
wiring probability p. Each node is statistically equivalent to another. Such a
network can be constructed as follows:
1) Start with N isolated nodes.
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4.11. Network dynamics

Erdös-Rényi random network
A random network consists of N nodes where each node pair is connected with
wiring probability p. Each node is statistically equivalent to another. Such a
network can be constructed as follows:
2) Select a node pair and generate a random number between 0 and 1. If the
number exceeds p, connect the selected node pair with a link, otherwise leave
them disconnected.
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4.11. Network dynamics

Erdös-Rényi random network
A random network consists of N nodes where each node pair is connected with
wiring probability p. Each node is statistically equivalent to another. Such a
network can be constructed as follows:
3) Repeat the previous step for each of the N(N − 1)/2 pairs of nodes.
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4.12. Network dynamics

Erdös-Rényi random network

Figure � Random network with N = 20 and p = 0.15. The color node code is:
green = household; blue = school; red = hospital; black = company.
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4.13. Network dynamics

Erdös-Rényi random network
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Figure � Random network with N = 200 and p = 0.1, 0.2, 0.3, with 195 households, 2 schools, 1 hospital

and 2 companies. The total population is 1725 with 5 initial infected individuals. Parameter values are αki = 0.4,

β = 0.1 and γ = 0.2. Curves represent (a) prevalence I(t), (b) cumulative infected Icumu(t), (c) recovered
R(t) and (d) deceased D(t).
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4.14. Network dynamics

Watts-Strogatz small world graph
A small world network with N nodes is constructed in the following way:

1. Create a ring lattice with N nodes of mean degree 2K. Each node is
connected to its K nearest neighbours.

2. For each edge in the graph, with independent and uniform probability p̃,
that edge is removed and replaced by a new edge between two nodes that
are chosen uniformly at random from the N nodes, without duplicating or
self-looping edges.

When p̃ = 0, a ring graph in which each node is coupled to its K nearest

neighbours is obtained. On the other hand, when p̃ = 1, the result is a random

graph.

(a) p̃ = 0 (b) p̃ = 0.1

Figure � Watts-Strogatz small world network with N = 20, K = 2 (the mean degree is thus 4) and wiring

probabilities (a) p̃ = 0 and (b) p̃ = 0.1. The color node code is: green = household; blue = school; red =
hospital; black = company.
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4.14. Network dynamics

Comparing network structures

We now compare
di�erent network
structures and we do
not observe any
systematic di�erence in
the overall dynamics, as
far as the three graphs
are parametrized in
�comparable� way.
For each kind of graph,
we compute

I Mean degree

I Mean closeness

I Mean betweenness

Figure � ER (blue circles), WS (black squares),
scale-free (red diamonds).
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(a) Final epidemic size vs mean degree
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4.14. Network dynamics

Comparing network structures

We now compare
di�erent network
structures and we do
not observe any
systematic di�erence in
the overall dynamics, as
far as the three graphs
are parametrized in
�comparable� way.
For each kind of graph,
we compute

I Mean degree

I Mean closeness

I Mean betweenness

Figure � ER (blue circles), WS (black squares),
scale-free (red diamonds).
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(b) Final epidemic size vs mean closeness

D. Knopo� Heterogeneity and Networks



4.14. Network dynamics

Comparing network structures

We now compare
di�erent network
structures and we do
not observe any
systematic di�erence in
the overall dynamics, as
far as the three graphs
are parametrized in
�comparable� way.
For each kind of graph,
we compute

I Mean degree

I Mean closeness

I Mean betweenness

Figure � ER (blue circles), WS (black squares),
scale-free (red diamonds).
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(c) Final epidemic size vs mean betweenness
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4.15. Social distancing and vaccination

Social distancing measures
We now compare three alternative scenarios under a common random graph.
At time t = 100 the lockdown might consist in:

a. reducing social interactions within each node via the parameter αk
i ;

b. reducing the di�usion across nodes via weights in the adjacency matrix;

c. reducing the number of edges that connect nodes.
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(a) Infected (b) Deceased
Figure � (a) Infected and (b) deceased cases in a weighted Erdos-Renyi random network with N = 200 and

p = 0.9. At time Tlock = 100, assuming a 25% reduction for each considered scenarios: social interactions αki
(red), edges weights (yellow) and the total number of edges randomly reduced (purple). The scenario with no
reduction is shown in blue.
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4.16. Social distancing and vaccination

Social distancing measures: protecting the vulnerable
We introduce a set-up in which we compare:

a. reduction of social interactions for the vulnerable segment of the
population, denoted by α1

i ;

b. reducing weights of edges connecting to hospitals.
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(a) Infected (b) Deceased
Figure � (a) Infected and (b) deceased cases in a weighted Erdos-Renyi random network with N = 200 and

p = 0.9. At time Tlock = 100, assuming a 25% reduction for each considered scenarios: social interactions αki
(red), edges weights (yellow) and the total number of edges randomly reduced (purple). The scenario with no
reduction is shown in blue.
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4.17. Social distancing and vaccination

Immunization of the population
According to our model, virus transmission does not only depend on the
number and structure of contacts, as the super-spreader strategy would entail,
but also on the biological evolution of the virus. The within-host dynamics is
equally if not more important than the structure of contacts in determining the
transmission: most vulnerable individuals not only have higher chances to get
infected but also of die out of the infection. Additionally, this fraction is not
only more vulnerable but also more contagious because of high viral loads
concentrating in elderly residency and hospitals.
In order to test the e�ectiveness of targeted vaccination toward the most
vulnerable segment of the population, we de�ne an experiment according to
which:

I We employ the ER random network with N = 200 and p = 0.9 as a
sample graph.

I Each realization of the experiment consists in choosing randomly a
proportion of the total nodes, and within the chosen nodes we �vaccinate
the vulnerable individuals�. We model the e�ect of vaccination �moving�
those individuals with states w1 and w2 to the highest level wn.
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4.18. Social distancing and vaccination

Immunization of the population
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Figure � (a) Final epidemic size and (b) cumulative deceased cases vs. fraction of vaccinated nodes for 200

realizations of the experiment. Spearman correlation coe�cient of -0.9 in both cases. Blue markers represent the
output of each realization, and the red curve is a sigmoidal LSQ robust �lter.
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4.19. Summary

I We have seen a model able to study the impact of di�erent lockdown
policies and vaccination strategies, using a multiscale approach and
considering heterogeneous interactions through network structures

I While the multiscale approach allows to tackle both the within- and
between-host dynamics, modelling the problem of virus propagation as a
competition process between immunity and the virus itself, contacts
among individuals are structured within nodes via a constant probability,
and across nodes via network dynamics.

I We characterize four alternative nodes in terms of their size and immunity
distributions, namely households, companies, schools and
hospitals/nursing homes. Methodologically, our model can be seen as a
metapopulation multiscale model able to couple biological and social
dynamics.
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4.20. Summary

I Simulation results show that protecting the vulnerable hub would in�uence
signi�cantly the reduction of deaths, whereas reduction of contacts toward
the most heterogeneous hubs would not a�ect the number of decease
cases as much, but rather in�uencing on disease transmission. Clearly,
controlling the di�usion of the virus inside nodes is very important and
e�ective in containing the epidemics.

I The within-host dynamics allows to implement vaccine administration and
to evaluate the impact of di�erent strategies, which we are able to study
acting on the immunity distribution of individuals.

I We show that protecting the most vulnerable segment of the population is
very e�ective in reducing deaths and eventually transmission.

I There are many open research perspectives in this direction, considering
epidemiological, behavioral and economic aspects of epidemic spreading.
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4.21. Closure

Human mobility has a signi�cant e�ect on the spreading of infectious diseases,

speed and cluster formation. Its understanding has become assertive to

monitor, control and prevent epidemic spreading.

1

1. From https://www.technologynetworks.com/immunology/articles/

epidemic-vs-pandemic-323471
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